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We study the approach to equilibrium of a classical gas. The initial condition 
corresponds to a Maxwell velocity distribution, but to a nonequilibrium binary 
correlation. We consider two cases. In the first, there are initially no spatial 
correlations, while in the second, initial correlations correspond to long-range 
spatial order. We show that the gas leaves the Maxwell velocity distribution 
function in the process of building up equilibrium correlations. The spatial 
correlations in the equilibrium state are seen to emerge from a self-organization 
process in the gas. Non-Markovian effects play an essential role in this process 
by coupling the velocity distribution and the binary correlations. For the case 
of initial long-range correlations we obtain "anti-Boltzmann" behavior in the 
evolution of the velocity distribution as the Boltzmann entropy decreases from 
the nonequilibrium to the equilibrium state. For this case we also have non- 
trivial behavior on a short time scale due to the non-Markovian effects. The 
approach used here is based on the theory of subdynamics as developed in pre- 
vious publications. The results obtained show the interplay between irreversible 
processes leading to disorder and to order in a classical gas. 

KEY WORDS: Order and disorder; long-range correlations; anti-Boltzmann 
behavior; non-Markovian processes; subdynamics. 

1. I N T R O D U C T I O N  

As is wel l  k n o w n ,  B o l t z m a n n  e m p h a s i z e d  t he  c lose  r e l a t i o n s h i p  b e t w e e n  

i r r e v e r s i b i l i t y  a n d  d i s o r d e r .  T h i s  p o i n t  of  v iew h a s  b e e n  c o n f i r m e d  t h r o u g h  

n u m e r i c a l  s i m u l a t i o n s .  (1) H o w e v e r ,  t h i s  c a n n o t  be  t he  w h o l e  s to ry ,  as  for  a 

c lass ica l  s y s t e m  a t  t h e r m a l  e q u i l i b r i u m  we h a v e  b o t h  d i s o r d e r  in  the  

ve loc i t y  d i s t r i b u t i o n  a n d  o r d e r  as  e x p r e s s e d  in  t w o -  o r  h i g h e r - o r d e r  

c o r r e l a t i o n  f u n c t i o n s .  T h i s  s p a t i a l  o r d e r  a l so  h a s  to  be  t he  c o n s e q u e n c e  of  
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irreversible processes, i.e., starting with any initial condition, the system 
"self-organizes" the spatial order to be consistent with the equilibrium 
state. 

From the Liouville equation, which gives the time evolution of the 
complete N-particle distribution function p, we can compute the time 
development of the velocity distribution (or "vacuum of correlation") Po, 
two-particle spatial correlation P2, or three-particle spatial correlation p3 .2 
As a result of the interactions, we have a "flow of correlations ''~a3~ 

po ~ p2 ~ p3 ~ " "  (1.1) 

To visualize these processes, it is useful to introduce the ~-funct ion 3 

~t~ f d [ ' p  2 (1.2) 

where d F  is a volume element in phase space. We can easily decompose 
into contributions coming from the various correlations 

d F = ~ o  + ~ +  ~ + -.- (1.3) 

where 

= f d F p  2 for i =  0, 2, 3,... (1.4) 

If we start with a system without correlations, we may expect the behavior 
represented schematically in Fig. 1. The total value of ~ is constant in 
time, since the evolution of p is unitary. 

The behavior represented in Fig. 1 was predicted by Prigogine and 
verified by the numerical simulations of Orban and Bellemans,~l) as well as 
in a recent paper by Prigogine eta/ .  (4) Here, as in the numerical simulation 
reported in ref. 4, we are interested in situations where we initially impose 
both the velocity distribution and the binary correlations P2. In the 
numerical simulation, hard disks were used and were put at the nodes of 
a two-dimensional triangular lattice. The system was started therefore with 
"artificially high" spatial correlations. 

z We are considering in this paper a spatially homogeneous system exclusively, so that the 
inhomogeneous component Pl vanishes. The precise definition of, for example, P2 is given by 
P2 -=zk  pIk, k~p, where the definition of the projection operator p~k, g) is given in (2.20) 
and below. 

3 Our choice of the tit '-function allows the decomposition (1.3). Indeed, due to the 
orthogonality of each correlation subspace [-see (2.19)], we have S dFpipj= 0 for i~j.  
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Fig. 1. 
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Schematic representation of the typical behavior of the entropy components in a 
system started without correlations. 

In this paper we shall consider soft interactions in dilute gases. Situa- 
tions where initially there is either too little spatial order or, as was the 
case in the numerical simulations, too much spatial order are considered. 
Moreover, as was done in the numerical simulations, we start with a 
Maxwell velocity distribution. We expect quite different behavior from the 
two limiting situations. If there is initially too little order, ~2 (and also ~3, 
~4,...) in formula (1.4) will increase, and therefore -~o will initially decrease. 
As initially the velocity distribution is already Maxwellian, this decrease of 
~0 is realized by an increase in the temperature. In the second case, where 
we start with a long-range two-particle correlation so there is more spatial 
order than the equilibrium state, we find that eventually ~ decreases and 
~o increases, an evolution which corresponds to a lowering of temperature. 
We have, in agreement with computer experiments, "anti-Boltzmann" 
behavior, as the entropy associated with the velocity distribution eventually 
decreases. For  short times, though, the system cannot "feel" the long-range 
correlations and it behaves like the first case. This exemplifies in a rather 
dramatic way the influence of correlations on the evolution of the velocity 
distribution. 

We shall see that these predictions can be verified through our kinetic 
approach. In order to obtain a quantitative description of these types of 
processes, we need to go beyond the traditional Markovian approximation 
used in kinetic theory, for example the 22t limit, where one considers the 
coupling constant 2 going to zero while the time t increases, or the ct  limit, 
where one considers the concentration c going to zero while the time t 
increases. (2) Indeed, we now need to retain finite values of the coupling 
constant or of the concentrations and thus include non-Markovian effects. 

A classical gas is a large Poincar6 system (LPS), and therefore, as 
discussed elsewhere, the eigenvalue problem associated with the Liouville 
operator L diverges. (5 v) The subdynamics theory avoids the divergence by 

822/67/1-2-24 
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introducing a new type of analytic continuation which leads to a spectral 
representation of L involving complex eigenvalues. ~7'8) In short, we 
associate a positive direction of time (in the lower half of the complex 
plane) to dynamical processes increasing (or preserving) the degree of 
correlation, while we associate a negative direction of time (in the upper 
half of the complex plane) to dynamical processes decreasing the degree of 
correlation. Here the degree of correlation is defined as the number of par- 
ticles incolved in a correlation (see ref. 7 for more detail). The dynamics of 
correlations is therefore used to define in an intrinsic way the direction of 
time. 

In the subdynamics theory, the evolution of the probability density 
p(t) is expressed as a sum of independent evolutions in the various "sub- 
spaces" H ~v/ corresponding to generalized eigenvectors of the Liouville 
operator. ~8~ (For the convenience of the reader we give in Appendix A a 
short summary of the subdynamics theory.) This superposition leads to a 
quantitative description of the non-Markovian processes that were intro- 
duced into kinetic theory some time ago. ~2~ As we shall see, the non- 
Markovian processes play an essential role in the coupling of the degrees 
of freedom of the gas, and correspond to a "self-organization" which 
prepares the long-time kinetic description. ~3) These processes correspond 
to the induction period, preceding the kinetic regime, as discussed 
qualitatively by Bogolubov ~9) and semiquantitatively by Green ~1~ and 
Cohen. ~11~ In those works the induction period was argued to last for a 
time on the order of the duration of a collision. As will be shown in detail, 
our formulation gives an explicit description of the induction period which 
may, for a system prepared initially with long-range correlations, last much 
longer. 

In Section 2 we introduce the model and specify the initial conditions. 
In Section 3 we study the time evolution of the system as governed by the 
Liouville equation by using the subdynamics theory. In Sections 4 and 5 we 
discuss the velocity distribution, temperature shift, and entropy change for 
the cases of vanishing initial correlations and initial long-range correla- 
tions, respectively. Finally, in Section 6 we summarize our results. 

2. T H E  M O D E L  A N D  T H E  I N I T I A L  C O N D I T I O N S  

We consider a classical homogeneous gas interacting through two- 
body central forces (see Chapter4 of ref. 2). The Hamiltonian of the 
N-particle system is 

H=Ho+2V= P J + 2  VKIxj--Xnl) 
j=l  2m S,- 

(2.1) 
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where 2 is a small dimensionless coupling constant. We will take units with 
the mass of the particles m = 1 and so will make no distinction between the 
linear momentum pj and the velocity vj of particle j. 

We are interested in studying the gas in the thermodynamic limit, i.e., 

N 
N ~ o o ,  s - - = c  (2.2) Q 

where N is the number of particles, f2 = L 3 is the volume of the gas, and 
c is the concentration. We start with the N-particle system in a box of 
volume L 3 and impose periodic boundary conditions. Hence, the inter- 
action potential V can be expanded in the Fourier series 

V(lxj-xnl  ) = ~ V, exp[il. (xy-xn) ]  (2.3) 
t 

The limit (2.2) is then taken at the appropriate place in the calculation, 
which leads, for example, to 

- -  ~ ~ f d31 and 6Kr(k) -+ ~5(k) (2.4) 

where 6K~(k) is the Kronecker delta function and 6(k) is the Dirac delta 
function. 

The N-particle distribution function p of the system evolves by the 
Liouville equation 

# 
i ~ p(t) = Lp(t) (2.5) 

where the Liouville operator (or Liouvillian) L is defined from 

Lp =- i{H, p} (2.6) 

with H the Hamiltonian and {H, p} a Poisson bracket. Thus, 

8H 8 OH 8 
L = - i ~ v ~ x + i  #---~Ov (2.7) 

For notational convenience we have used in (2.7), as elsewhere from now 
on when no ambiguity will occur, 

X ~  {X1, X 2 " ' ' X N }  (2.8) 

v = {vl, v2 "''VN} (2.9) 
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and likewise for other sets of N quantities. The  Liouvill ian for the 
N-part icle gas is thus obta ined  f rom (2.1) and (2.3) using (2.7) to give 

where 

and 

L = Lo + 2Lv (2.10) 

N 
L o = - - i  ~ Vj" (2.11) 

j =  1 (~Xj 

8/r 3 
L v -  f2 ~ ~ eU'~xJ-x")Vtl" Ojn (2.12) 

j, n t 

where we have in t roduced the shor thand  nota t ion  

0J"= ~vj ~ (2.13) 

We use a "superspace"  descript ion of the system where a phase 
function like p(x, v) is regarded as a vector  of the superspace3 7) To  apply 
the subdynamics  theory,  the eigenfunctions of the unper tu rbed  par t  of the 
Liouvill ian are needed. They  are defined f rom 

Lo[k;  u) = lk;u I k;u) (2.14) 
where 

lk; u = k .  u (2.15) 

F r o m  L o in (2.11) 4 

(X, v l k ;  u )  = Q N / 2 e i k  x(~(U - -  V)  (2.16) 

where 6(u - v) = [IN= 1 6 ( u i -  vi). 
The  matr ix  elements of L v with respect to the unper turbed  eigenstates 

of Lo are 

(k;u ]Lv] k ' ; u ' ) = f 2  Uf dxdve ik " x ~ (  u - -  V ) t v e i k "  x o ( u '  - -  V ) 

8~ 3 
= - - 2  ~ ~ vz6Kr(kk-kj+l) 3Kr(k ' , -kn- l )  

Q 
j ,n l 

x 1~ 6Kr( k ' -  kr) !" [0~,6(u'- u)]  (2.17) 
r~aj, n 

where 0~, is associated with the variables uj and u', [see (2.13)]. 

4 We use eigenfunctions in the complete phase space, so the multiplicative factor v in L0 
accounts for the factor 6(u- v) in the eigenfunction. This makes the matrix elements of Lv 
in (2.17) numbers, in contrast to the choice of eigenfunctions in just x, k-space as in ref. 2, 
where the Lv "matrix elements" are then operators. 
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From the eigenstates of L o we introduce the (unperturbed) complete 
set of orthogonal projection operators p(k~ defined as 

(k) 
P, -= lk; u)(k; ul (2.18) 

which satisfy 

(k) (k')  (k) e (k) 
P~,Pv=P~,c~Kr(k-k')g~(u-v); ~ j duPu=l (2.I9) 

k 

We are considering in this paper a homogeneous gas, i.e., where the 
state of the system is invariant with respect to a bulk translation of all par- 
ticles. In this case only projections with Z i  ki = 0 contribute. (2) Of special 
importance will be the p(0) projectors on the "vacuum of correlations" (the 
velocity distribution), and the p(k,-k) [here the notation ( k , - k )  means 
(k j=k ,  k . = - k ,  kr~{j,n} = 0 ) ]  projectors on binary correlations (in the 
Fourier space). Expanding p in these unperturbed projectors, we have 
explicitly 

k 

= y~ f clu(x; vtk; u)(k; ulp) 
k 

= ~-~{po(~)  + ( 8 ~ / n )  

x Y, ~ pk,_k(Vj, Vn I...)exp[ik" (xj-xn)]  + .-.} (2.20) 
f in k 

The notation Pk, k(Vj, Vn 1"") means that the Fourier component Pk,-k has 
nonzero wave vectors of k and - k  for the particles j and n, respectively. 
It is related to the projector p(k, k) as 

(k, k) 

P P=Pk, k(v/,vn] -.-) 

The dots to the right of the bar schematically indicate the dependence of 
Pk,-k on the velocities of the rest of the N - 2  particles with vanishing 
wave vectors. The volume dependence of each term in the second line of 
(2.20) is a result of the assumption that the distribution function depends 
smoothly on the space variables (see ref. 2 for a more detailed discussion 
of this decomposition). This property is preserved by the dynamics under 
time evolution. 
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The reduced s-particle distribution function is defined from the full 
N-particle distribution p as 

fs(Xl ..... Xs; Vl,..., IAs) 

N~ 
- ( N -  s)! f (d3x)N s (d3v)N--s (d3v)N-s p(X, l)) (2.21) 

The N-particle velocity distribution po(v) is by definition the p(O) compo- 
nent (the vacuum of correlation) of p. It is obtained by integrating p over 
all N positions. The one-particle velocity distribution function q~(v) is 
obtained by integrating over all N positions and over N -  1 velocities. For 
a homogeneous system it is related to f l(x;  v) by 

f~(x; v) = c~o(v) (2.22) 

The reduced two-particle correlation g2 is as usual defined by 

cZg2(x~, x#; %, v#)=f2(x~, x#; %, v # ) - f l ( x ~ ;  %)f l (x# ;  v#) (2.23) 

For a homogeneous system there are simple relations (z) between each 
correlation function and the reduced Fourier components of p. For 
example, the two-particle correlation is related to Pk, k by 

g2(x~-x#;v~ ,v# ) -=fd3kpk ,  k(V~, V/~) e ik'(x~- x#) (2.24) 

where PU_k(V~,V#) is the reduced Fourier coefficient obtained by 
integrating pk._k(V~,V#]...) over all velocity variables except those 
belonging to particles ~ and ft. 

We consider a weakly-coupled system so that the potential is always 
much smaller than the average kinetic energy of the particles. The inter- 
particle potential is chosen as 

V= Vo e-~lxj-x"L (2.25) 

which has the Fourier transform 

~Vo 1 
Vk = ~2 (k z + ~/2)z (2.26) 

The initial condition is taken to be (from now on we will not in 
general indicate the velocity variable dependence of the projection 
operators unless it is necessary) 

= - k p(0) (2.27) 
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This means that we specify at t = 0 the velocity distribution and the binary 
correlation function. More specifically, we take 

po(0)= exp - 2 j~1 

where f i=  1/kBT o (kB is the Boltzmann constant and T O the initial 
temperature) and 

g2(O) = - Gfie . . . .  'e- c~o + ~,~)/2 (2.29) 

where x ~ , - I x ~ - x ~ [ ,  which corresponds to the N-particle Fourier coef- 
ficient 

Pk, k(0) = -- n2 (k 2 q- 0.2) 2 exp -- 2 j= 1 (2.30) 

The specific choice of the initial two-particle correlation is made in order 
to make comparisions with the equilibrium correlation. Two parameters 
are introduced in the specification of g2; G and a, which measure, respec- 
tively, the amplitude and the range of the two-particle correlation. At 
equilibrium, to lowest order in 2, we would have [as will be seen later in 
(3.22)] 

G=2Vo ,  a = t /  (2.31) 

3. T I M E  E V O L U T I O N  OF  T H E  S Y S T E M  

To calculate the evolution of the distribution function, we employ the 
theory of subdynamics to solve the Liouville equation. We start with the 
evolution of the velocity distribution. It is determined from the pC0) projec- 
tion of p as decomposed in subdynamics as [see (A.15)] 

(o) (o) (o) co) (o) (o) 
po(V; t ) =  P p ( t ) =  P [ e x p ( - i 0 t ) ] A ( P  + D)p(O) 

(O)(k) (k) (k) (k) (k) 
+ ~ P C [ e x p ( - i O t ) ] A ( P + D ) p ( O )  (3.1) 

(k~O) 

The definitions of the kinetic operators d cv~, C cv), D cv~, and 0 c~'~ are given 
in AppendixA. The first term in (3.1) gives the usual Boltzmann (or 
Fokker-Planck) type Markovian evolution in the //(o) subspace. The 
second term corresponds to the excitation of the binary and higher correla- 
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tion modes. The superposition of these mechanisms leads to non- 
Markovian effects. (~'3) As will be discussed later in detail, the H (~ subspace 
will dominate asymptotically in time. The subspaces other than H (~ 
correspond to non-Markovian processes. 

Let us now follow what happens in H (~ space. By (3.1) we see that the 
evolution of the p(O) component of p in H (~ space (i.e., p(o ~ satisfies the 
closed equation [see (A.17)] 

(o) (O)(o) ~ ,~ 
i 8po(t)/St = 0 po~t) (3.2) 

with the initial condition [see (A.7)] 

(o) , , ~ ,  (o) (o) (o) (o) (o) 
potU) = P FIp(O)= A( P + D) p(O) (3.3) 

As mentioned, the traditional approximation for weakly-coupled systems 
used in kinetic theory corresponds to the 22t limit where only contributions 
of (9((22t) n) (with n = 0, 1,...) are retained. (2) In this approximation, one 
neglects the second term in (3.3) (i.e., D(~ and in the first term one 
replaces A (~ by 1. We then recover the usual Boltzmann (Fokker-Planck) 
description. In this approximation there is no coupling between the evolu- 
tion of the velocity distribution and the correlations. We wish to go beyond 
this weakly coupled first approximation corresponding to traditional 
kinetic theory and include all terms of (9(J.()~zt) n) and 0 ( ) ~ 2 ( ~ 2 / ) n ) .  

Using our choice for p(0) from (2.28) and (2.30), then we have, up to 
(;(; 2), 

Pot~',= ~ P D1 P + P A2P + ~ (P) P p(O) (3.4) 
k k 

Here D~ ~ and D(2 ~ correspond, respectively, to the first- and second-order 
contributions to the destruction operator D (~ and A(2 ~ to the lowest order 
(in 2 2) contribution to A (~ The important point is that the initial velocity 
distribution in this subspace depends explicitly on the state of the initial 
binary correlation function. This indicates a coupling between the velocity 
distribution and the correlation function. 

Using the general forms of the operators D1, A2, and D2 as given in 
Appendix A and the matrix elements of Lv from (2.17), we obtain here for 
the gas 

(0)(o)(~, k ) ~  f .8~jk. 1 PD1 P = d3k Vkk (3.5) 
j =  1 u ie 

( 0 ) ( 0 )  (0) 87~ 3 N (. 1 
P A2P = - ~ -  j~"=l j d3k VZk. O~j(k .~j_ie)2k.8~j  (3.6) 
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(o)(o) (k, ~:) N 
: y f d3l f d3k V,(k- t) P D2 P 

j--i 
1 1 

• 0~j (k - !).  v~j - i~ k .  0~j ~-. v=j - ie (3.7) 

In the above expressions, as in the following, we have integrated over the 
auxiliary velocity variables u, u',.., so the velocity dependence is on v only. 
The derivative operators 0~j are with respect to v and act on everything to 
their right. 

Using (3.5)-(3.7) with the interaction (2.26) in (3.4), we obtain the 
initial condition p{o~ which we reduce to obtain the initial one-particle 
velocity distribution in//<o~ space (see Appendix B for details) 

where 1F1(�89 3; �89 2) is the confluent hypergeometric function. (Note that 
v here represents the magnitude Ivl of the velocity of one particle.) The 
important point is that (3.8) corresponds to a nonequilibrium velocity dis- 
tribution. From (3.2) this initial velocity distribution in H (~ space evolves 
by the evolution operator 0 (~ Taking 0 (~ to 0(22), we have explicitly 
[-see (A.16) with (A.11) in Appendix A] 

P(~176 (o)02p _- 8x 3Q ~ f d3k V~k" 0=Yk" %y-igl k'0=y (3.9) 
j= 1 

This is the well-known Landau collision operator for weakly coupled 
gases32) Hence, to this approximation the velocity distribution in F/m) 
space evolves by the Landau kinetic equation. There would be no point 
here in going to higher-order approximations in the kinetic equation (3.2), 
as this would simply introduce corrections in the relaxation time. 

The fact that initial condition (3.8) is of the form of a Maxwellian plus 
a correction of (9(2) allows us to use the linearized form of the kinetic 
equation to obtain the asymptotic equilibrium velocity distribution as ~ 
(see Appendix C for details), 

cpeq(v) = (2zc/fl) 3/2 exp(-f lv2/2)  (3.10) 

where f l=  1/kB T eq, and the equilibrium temperature is 

F 8 C6Vo ] 
Teq = To [_ 1-23(rl+a)3k~T~+223t13k~T~ j (3.111 
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Since the evolution operator (3.9) preserves kinetic energy, we can also 
derive this result (3.11) by defining the temperature as an average of v 2 for 
(3.8). 

One can see from (3.11) that different choices of the parameters G, 
characterizing the "strength," and a, the inverse of the correlation length, 
in the initial two-particle correlation (2.29) lead to a temperature shift that 
may be positive, negative, or vanishing. In Sections 4 and 5 two special 
cases are considered. 

The evolution of Po in//(2) _ / / (k . -k)  space is given by 

(2) .  , (0)(2) (0)(2) (2) (2) (2) (2) 
po(t)= PHp(O)= P C[exp(-iOt)] A(P  + D)p(O) (3.12) 

Up to order 2 2 , then, we have the two contributions 

(2) (0)(2) (2) (2) 
Po12 = 2P Cl[exp(-iOt)] Pp(O) (3.13) 

coming from the propagation in p ( 2 )  space of the initial two-particle 
correlation and then a transition to p(O) space, and 

(2) (0)(2) (2) (2) (0) 
P OlO = ) 2 p  C1 [exp( - i 0,)] D, Pp(O) (3.14) 

arising from a diagonal transition consisting of a transition from p(O) to 
p(2/, propagation in p(2), and then a transition back to p(O). The evolution 
operator 0 (2) to lowest order here has a term independent of 2 since the 
unperturbed eigenvalue of Lo in p(2) space is nonvanishing [see (A.16)]. 
This term represents the propagation of the correlations without any 
damping by collision with a third particle. 

Carrying out the calculation in (3.13), similar to the derivation in 
Appendix B for (3.8), gives 

3a2 + t/2 e ~J '  
X e qv~jt 2 

a t 1 v~j 

2 t v~j 
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and from (3.14) we have 

(2, 8n 3 [2rC~-3N/2 (qVo,]2 n2 ~ 1 1 
/7 7 c 

y, - 3 q  s 3q-4t__ 
. V~j V~q 

3 3 4 1 -3 2 .2)  +~/Trl-5+(~/Trl - t+rl-2t3) v~j+-~/Trl t v~j; 

x e - " " ' / e -  n~}/2 (3.16) 

where we have again neglected damping due to a third particle. Note that 
p(2) decays to zero exponentially with the two time scales % ~  (r l (v))  -~, 012 
being the duration of a collision, and %,-, ( a ( v ) )  -1, being the time for an 
average particle to cross the initial correlation length. The component ,~(2) t~OlO 

is seen to decay with the duration-of-collision time scale % ~ ( t l ( V ) )  -1 
Hence, for the case of long-range initial correlations where a ~ t / the con- 
tribution of the H (2) subspace decays slower than the duration-of-collision 
time scale. Since the kinetic equation, such as the Boltzmann equation or 
the Landau equation, is valid when the contribution from H (~ space 
becomes dominant, this means that the induction period for this case is 
much longer than the duration of collision %. 

The one-particle velocity distributions, from the reduction of (3.15) 
and (3.16), are found to be 

(2) , ,, 
~OI2t/-) ) 

: \ t "  i 2 (0._I_#7)3 U ( 0 " - - ~ )  3 

x (2•)1/2 /73/2 2F2 1, 1;2, 2; 

+ - - - ~  1F1 ;2;  

1 (/7v+o02 ( 1.3 (#~+~t)2) 
(2~)1/2 /73/2 2F2 1, ,~ ,2;  2/7 / 

/Tv + ~rt 

(/7v - ~'t)2'~ 
2/7 / 

a 2 + 3 r / 2 [  1 (Bv-tlt) 2 ( 3 (/TvDrlt)2) 
,1 (2U)1j2 /73/2 2e2 1, 1; 5' 2; 

- - - 7 -  1F, ;5; 
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1 2 2 1 - 2 g / 4 / 4 )  

x l e x p ( ( f l v 2 ; t ) 2 ) e r f c ( - ( f i v - q - t ) . )  
(2fi) 1/2 ] 

( (fiv + tlt)2) erfc { ~V + tlt) 7 
+ exp \ 2fl J \ ~ J J  

+ 1,7t) ,,} (3.1s) 

In the above two expressions 2F2 is the generalized hypergeometric 
function, 1F~ is the confluent hypergeometric function as appears in (3.8), 
and erfc is the complementary error function. 

Both (2) (2) ~0012(V ) and (Pol0(v) behave asymptotically like lit for t large. 
It looks as though we have found long-time-tail behavior here, but the lit 
decay is due to the fact that we only considered the flow part and neglected 
collision with a third particle in the time evolution operator 0 (2). If we were 
to go to the next order in 2, there would appear an exponentially decaying 
factor due to the three-body collision. 

Since the contributions from H (2) space decay, the H (~ space velocity 
distribution dominates for long times. Actually, the entire N-particle 
asymptotic equilibrium state is in the H (~ subspace. (12) At equilibrium the 
two-particle correlation function (to order 2) is given by 

(k, --k)(O) 
eq Pk, k(v) = 2  P Clp~)q(v) (3.19) 

It becomes then a functional of the velocity distribution. Here C~ ~ is given 
by [see (A.11)] 

(k,--k)(0) (0) 8~Z3 N 1 
P C I P =  f2 ~ Vk k '8~j  (3.20) j= l k . v~j- ie 

From the equilibrium velocity distribution (3.10) we obtain therefore 

pk,eq k(l)m, /),8) = -2(2~/f l ) -3  f ir  k e x p [ -  5fl(v~l- 2 + v~)] (3.21) 

This leads to [cf. (2.29) and (2.31)] 

g~q(x~; v~, v~) = -2(2~/fl)  3 flVo exp( -~ /x~)  exp[ 1 - 2 ~//(v~+v~)] (3.22) 
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4. INITIAL V A N I S H I N G  CORRELATIONS 

If in (2.29) we take G = 0, then we have a vanishing initial two-particle 
correlation. The equilibrium temperature is then, from (3.11), 

[ l T e q =  T O i _]_~2 3r/3k~ TgJ (4.1) 

Hence, there is a temperature increase as the system evolves to equilibrium. 
Notice that it is independent of the sign of the potential. 

This temperature increase is anticipated by the general considerations 
of Section 1. As the correlations "order" has to increase, the velocity 
"order" has to decrease to meet the constraint of the constancy of the 
Gibbs entropy. Moreover, as we already start with a Maxwell distribution, 
this leads naturally to an increase of temperature. In Fig. 2 the velocity 
distributions for this case are shown. Plotted for a certain choice of 
parameters are the initial distribution corresponding to the one-particle 
form of (2.28), the initial distribution in //(o) space (3.8) with G--0,  and 
the final equilibrium distribution (3.10). 

Since the initial and final velocity distributions are both Maxwellian 
and the temperature increases, the Boltzmann entropy increases also. 
Specifically, the Boltzmann entropy density is given by 

S 1 = - k  B f d 3 V f l  log f ,  (4.2) 

0.6 

0.4 

0.2 

{ ~ 3 4 

Fig. 2. Evolution of the velocity distribution when the system initially has no correlations. 
The solid line is the initial distribution, the dashed line is the initial distribution in H (~ space, 
and the dot-dashed line is the equilibrium distribution. The parameters have been chosen as 
c = 1, V0 = 1, p = 1, and ~/= 1, and to exaggerate the effect we choose a moderately large value 
of Z = 0.5. 
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Using our  initial and final velocity distributions gives 

s~q - -  sO "~ ")'2CkB \ 2 t / 3 k ~  rgJ > 0 (4 .3)  

Thus, the "disorder" associated with the velocity distribution has increased. 

5. I N I T I A L  L O N G - R A N G E  C O R R E L A T I O N S  

To consider the evolution from an initial state with long-range correla- 
tions, let us take in (2.29) G = 2Vo and ~r ~ q. For  this case Eq. (3.11) gives 
us 

T e n = T o i l - 2 2  7rccV~ 1 (5.1t 

showing that  there is a decrease in temperature as the system evolves to 
equilibrium. In Fig. 3 the velocity distributions as were given for the pre- 
vious case are shown. 

Let us discuss in greater detail the evolution of the velocity distribu- 
tion starting with (3.l) for t = 0  correct to order  2 2 [see also (3.4) and 
(3.14)]. We first consider the case G = 0  studied in the previous section, 
where the initial velocity distribution is 

(0) 2(0) (0) (0)(2) (2) (0) 
po(V;t=O)=P(l+2 A2) Pp(O)+22pC~D~Pp(O) (5.2) 

0.6 

0.4 

0.2 �84 

/1 %'~ 

1 2 3 4 

Fig. 3. Evolution of the velocity distribution when the system has Iong-range correlations 
initially. The solid line is the initial distribution, the dashed line is the irfitial distribution in 
H (~ space, and the dot-dashed line is the equilibrium distribution. The parameters have been 
chosen as c= l ,  V0=l, fl=l,  G=0.5, ~r =0.2, r/= 1.8, and 2=0.5. 
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The init ial  cond i t ion  is d i s t r ibu ted  over  the "kinet ic  subspace"  H (~ and the 
cor re la t ion  subspace  H (2). The init ial  condi t ion  cor responds  to a Maxwel l  

d i s t r ibu t ion ;  however ,  in each subspace  there is a non -Maxwe l l i an  con- 
t r ibut ion.  The  i m p o r t a n t  po in t  is that  the cor re la t ion  space H (2) dies out  
exponent ia l ly  over  a t ime of the order  of the d u r a t i o n  of a collision, as can 

be seen in (3.16). Therefore,  after this t ime we have a non -Maxwe l l i an  dis- 
t r ibu t ion  (coming from H (~ for p itself, and  H(~ acts as a "post - in i t ia l  
condi t ion"  for the slow kinet ic  evolu t ion  de te rmined  by Eq. (3.2). (13) 

However ,  for the case G # 0  cons idered  in this sect ion we now have 
the add i t iona l  con t r ibu t ions  to (5.2) of [-see (3.4) and  (3.13)] 

(o) ( 0 ]  = (o)(o) (2) 
P012~ , 2PDIPp(O) (5.3) 

from H (~ space and  

(2) .^. (0)(2) (2) 
Por2(O) = 2 P  C 1 Pp(O) (5.4) 

from H (2) space. At  t = 0 these terms cancel. However ,  (5.4) decays slowly, 
typical ly  on the t ime scale of the du ra t i on  for a par t ic le  to cross the init ial  
cor re la t ion  length. Therefore,  after the du ra t i on  of the collision, the system 

does not  yet have the t ime to "feel" the effect of  the ini t ial  correlat ions.  
Thus,  for shor t  times, the t empera tu re  first increases (as does the value of 
the ini t ial  corre la t ions) ,  then the decay of the inner  cor re la t ions  cools the 

T 

1"4915 I 

1.49051 f ~ 

1"4895 I 

0 5824 ~ 0'i 0J2 0~3 ' �9 . . 0.4 

Fig. 4. Evolution of the temperature for very short times in the case of initial long-range 
correlations with parameters c = 1, V 0 = 1, fl = 1, G = 0.5, tr = 0.2, r/= 1.2, and 2 = 0.5. The 
plot is obtained from numerical integration of �89 2 times the complete velocity distribution 
obtained from Eqs. (3.8), (3.17), and (3.18). The initial temperature is 1.4897 and the equi- 
librium temperature of 0.5824 is reached in a much longer time scale than is shown in the 
figure. 
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system. This cooling of the system corresponds to a decrease in the 
Boltzmann entropy. Specifically, we have 

Sel q - -  SOl "~ -- ,~  2 c k  B \2~/3k ~ T2 j < 0 (5.5) 

Thus, for this case we have "anti-Boltzmann' behavior as the system 
evolves to equilibrium. The evolution of the temperature for this case for 
a representative choice of parameters is shown in Fig. 4. 

6. C O N C L U S I O N  

The interplay between correlations and the velocity distribution 
presents interesting features. The analysis of the evolution of the distribu- 
tion function by using the theory of subdynamics allows us to couple the 
velocity distribution and the correlations by explicitly considering non- 
Markovian effects. The initial specification of the correlations determines a 
redefined initial velocity distribution which evolves kinetically to the 
asymptotic equilibrium form of the distribution function. 

In the absence of initial correlations the non-Markovian effects extend 
only over a duration of a collision. The system evolves to equilibrium with 
an increase in temperature and a concomitant increase of the Boltzmann 
entropy. In contrast, in the presence of initial long-range correlations we 
find non-Markovian effects which extend over the time for a particle of 
average velocity to cross the initial correlation length. In this case there can 
be a small increase in temperature initially before the system cools to the 
equilibrium state. This nontrivial behavior and detailed description of the 
prekinetic stage can only be obtained with a dynamical analysis which goes 
beyond the traditional Markovian approximations used in kinetic theory. 
With the long-range correlation initial condition the Boltzmann entropy 
decreases from the initial nonequilibrium state to the final equilibrium 
state. Thus, for this case we may say that the system displays "anti- 
Boltzmann" behavior. 

If we are interested only in the final temperature of the system, we can 
obtain the result (3.11) from the law of energy conservation and equiparti- 
tion (see Appendix D). However, as we have shown, the subdynamics 
theory goes beyond the phenomenological macroscopic theory and 
describes a detailed dynamical evolution toward equilibrium. The sub- 
dynamics theory provides a systematic description of the microscopic non- 
Markovian evolution of the system by decoupling it from the Markovian 
evolution. This is in contrast to the theory using the generalized master 
equation, which provides a complicated description of the non-Markovian 
evolution (see ref. 14, for example). 

822/67/1 2-25 
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APPENDIX  A 

We give here a brief summary of the subdynamics theory which we 
apply to the problem at hand. The reader is referred to ref. 7 for more 
details. 

The main idea of the subdynamics theory is the introduction of projec- 
tion operators for the complete Liouvillian that allows us to decompose the 
time evolution of the system into generalized eigenstates of the Liouvillian 
(see ref. 8 for details). Projection operators H ~ are constructed with the 
following properties: 

(v) (v) 
HL = L H  (A.la) 

(v) 
Z H =  1 (A.lb) 

v 

(v)(v') (v) 
H H = H6 . . . .  (A.lc) 

The H (~) are extensions, analytic in 2, of the projection operators, denoted 
p(v), of an eigenstate of the unperturbed Liouvillian L o, satisfying 

(v) (v) (v) 
PLo = Lo P = lv P A.2a) 

(v) 
~ P = I  

v 

(v)(v') (v) 

P P = Pfvv, 

where lv is an eigenvalue. 
In the form of a perturbation series, 

(v) (v) (~) 2(v) 
H = P + ) ~ H I + 2  H 2 +  . . .  

A.2b) 

(A.2c) 

(A.3) 

the projector //(v) is given from (A.la) and (A.lc) by: for the diagonal 
components, 

( v ) ( v )  (v) n - - 1  (v)(v)  (v) (v) 

P H n P =  - ~ P Hn mHmP (A.4a) 
m ~ l  

(v ')(v)  (v ' )  n 1 ( v ' ) ( v )  (v) (V') 

P H n P  = + ~ P Hn mHmP (v' r  (A.4b) 
m = l  

and for off-diagonal components v ' r  v", 

0")( . )  (v") 1 (v') (,~) (,~) 0/') 
P H ,  P -  P[Hn  I L v - - L v H , _ , ]  P (A.5) 

l~,--lv,,+iev,v,, 
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where 

{ - e  if dv,>du,, 

av,~,, = - e  if d~, = d~,, (A.6) 

+e  if d~,<dv,, 

and e is a positive infinitesimal, e--* 0 +.  Here, the index dv of the "degree 
of correlation" in (A.6) is the key of the analytic continuation of the small 
denominator, which is chosen by the consideration of the natural time 
ordering of states. If a state in Pt~) subspace needs at least j interactions 2 V 
to arise from a state in the minimum or "vacuum of correlations" subspace, 
then that state has a degree of correlation dv = j .  

As has been discussed in detail in ref. 7 , /7  ~v) can be decomposed in the 
form 

(v) (v) (~) (v) (v) (~) 
I I = ( P  + C) A (P  + D) (a.7) 

Here the kinetic operators A ~), C ~), and D ~v) are defined through the 
relations 

(,~ (v)(v)(v) 
A = P H P  

(v)O,) (v)(v)(v) 
CA = Q I 1 P  

(A.Sa) 

(A.8b) 

(A.8c) 
(v)O') (v)(v)(v) 
A D = P I 1 Q  

where Q(V) is the projector orthogonal to Pr defined by 
(v) (v) 
Q - 1 - P (A.9) 

These kinetic operators are related to each other through the formula 
(v) (v) (v)(v) 
A = P ( I + D C )  ~ (A.IO) 

By iterating recursion formulas in Eqs. (A.4) and (A.5) and using the 
series expansion of A ~v) in (A.10), we obtain the perturbation series of H (~). 
Here, we display the first few results of this series: For C ~v), we obtain 

(v') (v) (v) 

P CoP=O 

(~') (~) (v) 1 (~') (v) 
P C I P -  P L v P  

Iv,- lv + iev,v 

(v')(v) (v) 1 (~') (~") 

P C2P =-7 '~ l~,,-lv+iev,v P L v  P 

(A.11) 

1 (v") (v) 
P L v P  

Iv,, - l~ + iev,,v 
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for D (~), we obtain 

(~) (v) (v') 
P D o  P = 0  

(v) (v) (v') (v) (v') 1 
P D 1 P  = P L v  P 

Iv -- lv, + ievv, (A.12) 

(v)(~) (~') (~) (v") 1 (v',) (v') 1 
P D z P = ~  P L v P  P L o P  

v" Iv - Iv,, + iew,, lv - Iv, + ievv, 

and for A (v~, we obtain 

(v) (v) 

A 0 = P 

(v) 

A 1 = 0  

(v) (v) (v) 
A2 = - D1 C1 

(A.13) 

The time evolution of the distribution function in each H (v) subspace 
is given by 

~ ( t )  ~v/ ~v~ - H p ( t )  = [exp( - iLt ) ]  Hp(O) (A.14) 

where 

(v) (v) (~) (v) (v) (v) (v) 
[ e x p ( - i L t ) ]  H = ( P  + C ) [ e x p ( - i O  t )]  A ( P  + O )  (A.15) 

and the non-Hermi t ian  evolution operator  0 Iv) in each subspace is defined 
by 

(v) (v) (v) (v)(v) 
0 - I ~ P + ) ~ P L v C P  (A.16) 

F r o m  (A.15) it is easy to see that  the following closed kinetic equat ion 
holds in each subspace: 

(v) (v)(v) 
i ~pv(t)/~3t = 0 pv(t)  (A.17) 

where p~V) = p(v)H(V)p. 
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We wish to point out that one of the important aspects of the sub- 
dynamical decomposition is that the equilibrium distribution function lies 
entirely in the H (~ subspace. (12) Also, all contributions to the normaliza- 
tion of the distribution function for any time are coming entirely from H (~ 

APPENDIX  B 

Here we outline some steps in the calculation of (3.8). Let us consider 
just the second term in (3.4), 

(o) (o)(o) (2) 
Po12 =2 E PD~ Pp(O) (B.1) 

k 

From (3.5), using (2.30) and (2.26), we have then 

(0) ~ 8g 3 (27Z~ -3N/2 r]V 0 oG 
PO12=--  ~ - \ - - ~ - j  a: 2 7 fi 

N ? 1 1 1 
x ~ j d3k /= 1 ( k2 + //2)2 (k 2 _1_ 0.2)2 k ~ j  k �9 v ~ j -  ig e-fly2/2 (B.2) 

Carrying out the differentiation by v and then doing the 3-dimensional 
integration over k gives 

P012 = 2 ~ -  
3N/2 l~Vo o'G ~ T~2j~ 2 

~2 ~2 /~j = 1 or/(r/+ a) 3 

1 2 
x - l + - - ' ~ e  ~j/2 (B.3) 

We reduce to a one-particle velocity distribution by integrating over 
vj. The sum over j gives a factor N and N/ O = c. The integration of the first 
term in (B.3), being just a Gaussian integral, is trivial. For the second term 
we use 

f d3u (RT~)3/2 fl-1/2e-3V:/2Fl (1; ~; ; v 2 (B.4) 
V.j 

where 1F1(�89 3; �89 is the confluent hypergeometric function. It is related 
to the error function with imaginary argument and has the integral 
representation 

( ~ 3 )  x/-~ . l f f  
IF1 ; 2' ~2 = = ~  -" ~ erf(t~) e u2 du (B.5) 
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We thus have for this contribution to the one-particle distribution 

(o) [27z~ 3/2 8~cGVofl2 e ~v2/2] e-/~2/2 

(B.6) 

The other terms in (3.8) are obtained from (3.4) in a similar fashion. 
We note, though, that the D2 term vanishes because of the specific form of 
p k , _ k ( 0 )  that we have chosen. 

APPENDIX  C 

We follow Chapter 13 of ref. 12 to obtain the asymptotic equilibrium 
velocity distribution (3.10). The evolution of the initial velocity distribution 
(3.8) is governed by Eq. (3.2), where the time evolution operator is the 
Landau collision operator (3.9). The distribution (3.8) is of the form 

~o(v; 0) -- {1 + 2X(v; 0)} rp~ (C.1) 

where rp~ is the equilibrium distribution, and X is of (9(;t). We may 
consider the linearized collision operator obtained by substituting (C.1) in 
(3.2), using (3.9) and keeping only terms linear in X. The function X(v; t) 
then satisfies the linear Landau equation. Z is expanded in eigenfunctions 
~b, of the linearized collision operator and then the solution is expressed as 

Z(v; t )=  ~ 7,~bne ? '  (C.2) 
n=l 

The linearized collision operator has a fivefold degeneracy of the zero 
eigenvalue, 2~  0, with five mutually orthogonal and normalized eigen- 
functions ~bl,..., ~bs. As t ~ oo the distribution becomes 

~0(u OO) = {1-{-71~l(V)-}- "'" ~-75~5(V)} ~00(V) (C.3) 

where ~o~ is a Maxwellian. The coefficients 7n are determined from the 
initial distribution by 

f d3v cp~ g(v; 0) ~b. (C.4) 7, 

From (3.8) we find 71 = 72 = 73 = 74 = 0 and 

1 (~)1/2 [/~ 87~cGV~ ~ 27"CCV2~2] (C.5) 
=~  (~ +G) ~ .~ J 
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Then 

-3,2 l[;,8 ecv0  ;, ev  2l ( 
(C.6) 

But (C.6) is just the expansion up to (9(22) of (3.10) with the temperature 
(3.11). 

APPENDIX  D 

We show here how to obtain the result for the temperature shift (3.11) 
using energy conservation and the equipartition theorem. The energy 
density at a point x is given by (Ix) 

{f  1 V2 3(X-- Xl) fl(Xl ; Vl " t) E(x;t)=c -1 dXl dvl ~ 

1 
)~ f dx I dx 2 dv I dv 2 V()[ 1 --x2) ~(x --Xl) +5 

x f2(xl, x2; vl, v2; t)} (D.1) 

The two-particle distribution f2 is given from g2 and the one-particle dis- 
tribution by using (2.23). The initial distributions are given in (2.28) and 
(2.29). The final distributions are independent of the initial distributions 
and can be obtained from ordinary equilibrium statistical mechanics. The 
initial energy is thus 

-3-k [ 
E ~  BT~176 (rl 

and the equilibrium energy is 

-I-a)3 kBTo 

eq 3 k V 2 V o 
E =-~ ,Teq-4~2cVoL.(2tl~-s ~3] (D.3) 

By conservation of energy the two expressions above are equal and so we 
can calculate T eq as a function of To, 

T e q = 2 T o  3(q+a)3 kBro ~-'~B_= knT~ (r/+~-~-/~-~-BToJ 

3rw22V2~ l/2 (D.4) 
+ q3 j 

If we calculate this result to (9(22), we recover the result (3.11) obtained by 
our dynamical approach. 
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